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STEIN'S LEMMA-A LARGE DEVIATIONS APPROACH

INTRODUCTION

In this report, we prove Stein's Lemma, see Ref. 1, by using a Large Deviations Principle. This idea
was first proposed in Ref. 2; we provide a proof that is more general, direct, and intuitive.

Stein's Lemma is formulated as follows. Let {Xn}1 be a sequence of i.i.d. observations defined on
some underlying probability triple (Q.FR) and taking values in a measurable space (E, £). We know that
the probability measure R is one of two probability measures P or Q. For each n = 1,2,..., we form a
Neyman-Pearson test to decide whether R = P or R = Q on the basis of X1 , X 2 , ... , X,n (clearly, we need
that P 5 Q for this problem to be meaningful). Stein's Lemma states that for a fixed power constraint, the
size of the Neyman-Pearson tests decays at an exponential rate and provides a formula for this rate.

To place the problem in a rigorous setting, let {.Fn}' be the filtration of -T generated by the observations;

gEn := -J{X1, X2 ... Xn n = 1,2,... (1)

Let 0 < e < 1 be a predetermined constant, and take n = 1, 2,.... For each set D in J:n, we can define
a decision rule to select P or Q by choosing P if and only if w E D for any w e Q (the requirement that
D be in Fn, is of course equivalent to the requirement that our decision be a function of the observations
Xi, X2 ... X,). To form the Neyman-Pearson test of power e, we vary D E ,n so as to minimize the
size Q(D) (the false alarm rate in radar parlance) subject to the requirement that the power P(D) satisfy
P(D) > 1-c (i.e., a lower bound on the detection probability). Let e(n, e) be this minimum, or more exactly,
infimum; symbolically

e(n,) := inf{Q(D): D E .F, P(D) > 1- c}. n = 1,2,... (2)

Define P (respectively Q) as the probability measure induced on (E,) by any one of the observation
RV's X 1 ,X 2 ,.... under the probability measure P (respectively Q). Since the observations are identically
distributed, it does not matter which Xn we select to define P and Q; we may choose P PX1 71 and
Q QX1j. The result that we wish to prove can now be stated.

THE MAIN RESULT

Theorem 1 (Stein). Assume that P is absolutely continuous with respect to Q. Then

lim-log e(n, e) =-D(P,Q) (3)nfl
where

D(P,Q) log dQ dP, (4)

the integral possibly being infinite.

If the observation space E is finite, this result is the same as the one in Ref. 3, Corollary 2.2.2, and in
Ref. 2. We note that D(P, Q) is the Kullback-Leibler informational divergence of P from Q; thus we know
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that D(P, Q) is well defined; see Ref. 4 and Appendix A. Note also that if P is not absolutely continuous
with respect to Q, the Neyman-Pearson tests are trivial and e(n, c) = 0 for n large. Indeed, assume that P is
not absolutely continuous with respect to Q so that there is a set A in £ such that P(A) > 0 but Q(A) = 0.
For each n = 1, 2,..., define the decision region Dn C Yn as

Dn :={Xi A for some i = 1, 2, ..,n}

= J{xE E A}. (5)
i=1

Then
P(Dn) = 1 - P(Dn)

= P njXi e A}) (6)

= 1- P(A)n,

so that lim, P(D,) 1, and consequently Dn satisfies the power constraint for n large. But since

n

Q(D.) < Q{Xi E A}

n ~~~~~~~~~~~~~~~(7)

= Ah Q(A) = 0,
1=1

we conclude that for n large, e(n, c) < Q(Dn) = 0.

MOTIVATION FOR THE PROOF OF STEIN'S LEMMA

It is a well-known result that Neyman-Pearson tests are performed by comparing a log-likelihood ratio
to a threshold, see Ref. 5, Thm. 5.5.2. For each n = 1, 2,. .. , let Pn (respectively Q,) be the restriction of
P (respectively Q) to the Afield .F7. The absolute continuity requirement on P and Q implies that for each
n = 1, 2, .. ., P, is absolutely continuous with respect to Qn, so that our log-likelihood ratio is log dPn/dQ,.
If we define

dP
Y :=log -(Xi), n = 1, 2, ... (8)

dQ

then it is not difficult to verify that
d P,

Io d Sn n = 1,2, ...... (9)

where
n

Sn" Yi. n1 2.... (10)
i=1

Note that the sequence {Yn}7, is an i.i.d. sequence and that we have suggestively written the log-likelihood
ratio as a partial sum. If R = P, then by the Strong Law of Large Numbers (SLLN),

1 SI' ¢ j YldPn 

- I logdF (11)
E D( dQ

D D(P, Q).
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Alternately, if R = Q, we would then expect that if Q is absolutely continuous with respect to P,

1 Q-.a.s.f,,,.
-Sn - --- | j dQ
n

= | log d~dQ (12)

I log NdQ
JE dP

= -D(QP).

(See Appendix B for the SLLNs that are required in Eqs. (11) and (12) if the integrals are infinite.)

From Eqs. (11) and (12), our hypothesis tests should reflect the fact that Sn/n has different almost sure
limits under the different probability measures P and Q. If we define our decision regions so as to decide
that R = P if Sn/n is near D(P, Q), then a high rate of detection and a low false alarm rate should result for
large n. (Note that Eqs. (11) and (12) explain a technical difficulty. If P agrees with Q on .T1 := Vn 1I.n,
then we expect not to be able to distinguish between R = P and R = Q from the observations. This
is reflected in the easily verified fact that P = Q if and only if P and Q coincide on J,<,, in which case
D(P,Q) = D(Q,P) = 0 and Sn/n tends almost surely to 0 under both P and Q.) Since {Yi}7 is i.i.d., we
can use Cramer's theorem from the field of Large Deviations, see Ref. 6, Theorem 3.8 and Ref. 7, Theorem
3.1, to describe the rate at which Sn/n tends to its limit under P and Q. The reasoning behind the following
arguments is then clear.

PROOF OF THEOREM 1

A Large Deviations Principle
Let us temporarily assume that
(a) the probability measure Q is absolutely continuous with respect to the probability measure P,
(b) D(P, Q) < oo and D(Q,P)< oo, and
(c) the moment generating function M of Y1 under Q; i.e., M(O)):= fne6 'YdQ, is finite for all 0 in IR.

Under these assumptions, we may directly verify the upper bound

lim sup - log e(n,c) < -D(P,Q) (13)
'2 n

by invoking Cramer's Theorem. Fix 6 > 0 and set F6 := [D(P,Q)- 6,oo). From Eq. (11) we know
that if R = P, then limo Sr/n C F6 P-a.s. Since almost sure convergence is stronger than convergence in
probability, it is immediate that

lim P({S /n e F6 })= 1, (14)

so for large n, the decision regions given by

D := {SI/n e Fb} n = 1,2 .... (15)

satisfy the power constraint.

We can now apply Cramer's Theorem to verify that

lim sup - log Q(Dn) < - inf I(x), (16)
'2 n - EF6
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where I is the Legendre-Fenchel transform, see Ref. 8, Chapter 6, of log M(.);

I(x) := sup (Ox - log M(O)). x G MR (17)
OEMR

From Ref. 6, Lemma 3.3, we know that x .- 4 I(x) is nondecreasing for x > fn Y dQ =-D(Q, P), the integral
being well defined under assumption (b). Thus

inf I(x) = I (D(P, Q)-6). (18)
XE F6

But
I (D(P, )-6) > (1) (D(P, Q) - 6) - log M(1) (19)

=D(PQ)- 6

since

M(1) = J e8 dQ dQ = P(E) = 1. (20)

Combining Eqs. (16) through (19), we have that

lim sup Q(Dn) <-D(P,Q) + 6. (21)
n

In view of Eq. (14), we then have that

limsup - log e(n,c) < limsup - logQ(Dn) < -D(P, Q)+6. (22)
'2 n '2 n

Since 6 > 0 was arbitrary, Eq. (13) is established.

An inspection of the proof of Cramer's theorem reveals how to prove Theorem 1 when assumptions (a)
through (c) are not enforced.

Case 1: D(P, Q) < oo
Upper Bound: Fix 6 > 0 and again set F6 := [D(P,0) - 6,oo) and

D,:= {S,/n E F6}. n = 1,2,... (23)

As in the above arguments, we know that for large n, Dn satisfies the power constraint. Following the
arguments of Ref. 6, Lemma 3.4, we argue that for each n = 1, 2,...

Q(D.)= I dQ

< Jexp [Sn-n (D(P, 6-)] dQ (24)

= exp [-n (D(P, -6)] jn esdQ

= exp [-n (D(P, )-6)](1),

and consequently,
1

limsup - log Q(Dn) < -D(P,Q) + 6. (25)
n n

As above, this is sufficient to prove the upper bound Eq. (13) since 6 > 0 was arbitrary.
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Lower Bound: We next prove that

lim inf - log e(n,e) > - D(P,Q). (26)

Our proof of Eq. (26) is essentially the same as that in Ref. 2. Take 6 > 0. Then for each positive integer
n, we can find a set Un in Fn so that

P(Un) > 1 (27)

and
Q(Un) < e(ne)e'2/2 (28)

Define F6 := (-oo, D(P, Q) + 6/2] and set

Dn:= {Sn/n F6}. n= 12,.... (29)

As in the proof of the upper bound, the SLLN ensures that limp P(D,) = 1, so necessarily

Ilim inf P (Un, n Dn) > 1 - . (30)

For each n = 1, 2,....
P(Un n D,) = Pn(Un n D,,)

= JU~D eSn dQ
- en dQ (31)< I exp [n (D(P, Q) + 6/2)] dQ

< exp [n (D(P, Q) + 6/2)] Q(Un n D,,),

where we have used Eq. (9) and the fact that S, < n (D(P,Q) + 6/2) on D, which is obvious from Eq.
(29). Thus, upon combining Eq. (28) and Eq. (31), we have

e(n7, ) > Q(Un )e-n'612

> Q(U,. n Dn)e - 6 /2 (32)

> P(UT, n D,,) exp [-n (D(P,) + 6)]

so in view of Eq. (30),
1

lim inf - log e(n, c) > -D(P, )-6; (33)

since 6 > 0 was arbitrary, Eq. (26) is true.

Case 2: D(P,Q) = oo

We wish to prove that

lirn inf - log e(n,e)= -oo. (34)

From the SLLN found in Appendix B, we know that limn Sn/n = oo P-a.s. if R = P. Fix a positive number
B, anide(leine FB := [13, oo) and for each n = 1, 2,.. ., let the decision region Dn be given by

Dn:= I{Sln C FB}. (35)
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Then limo P(Dn) = 1 as in Case 1, but for each n = 1,2,...,

Q(D.) = J|S,>nB dQ

< |exP[Sn - nB]dQ (36)

=e nB j eSndQ

= e-nB()

so that

lim sup-log Q(Dn) < -B. (37)

Hence, in a manner analogous to Eq. (22),

1 1
limsup - loge(n,e) < limsup - logQ(Dn) < -B, (38)

and since B was an arbitrary positive number,

limsup - log e(n,e)= - oo, (39)
n

which was to be proved.

The proof of Theorem 1 is complete.

CLOSURE

Note in our proof of Stein's Lemma that we did not formulate the Neyman-Pearson tests. The Strong
Law of Large Numbers and Eqs. (11) and (12) led us to a series of tests that bounded the true Neyman-
Pearson tests. The asymptotic behavior of these tests was found by using Large Deviations arguments, and
Stein's Lemma resulted.

In the Neyman-Pearson tests studied here, we minimized the false alarm rate subject to a lower bound
on the probability of detection. The more common formulation is to maximize the probability of detection
subject to an upper bound on the false alarm rate. By reversing the roles of P and Q, we see that the two
problems are equivalent. Define

-y(n,c) :=sup{Q(D) :1D E .F, P(D) < e}. n = 1,2,... (40)

Then y(n,e) corresponds to maximizing the probability of detection Q(D) (the power) subject to the con-
straint that the false alarm rate P(D) satisfy P(D) < e (an upper bound on the size). Since

7(n,c) = 1- e(n,c), n = 1,2. (41)

an alternate way of stating the result of Theorem 1 is

lim - log (1 - 7(n, c))= -D(P,0) (42)
n n
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Note also that we can in fact relax the assumption that the observations are i.i.d. If Pn is absolutely
continuous with respect to Qn for each n = 1, 2,. .. , and if there is a constant M, possibly infinite, such that

M = P-lim- log d- ', (43)
n dQ,

then it is easy to verify, using the above arguments, that

lim-log e(n,c) = -M. (45)

We shall leave the proof of this extension to the interested reader.
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Appendix A

THE DIVERGENCE INTEGRAL

The proof that the divergence integral is well defined is difficult to find in the literature; here we provide
a simple proof. We show that ( dP (A -

JE ( dQ / < 1)

where x- := min{-x,0}. For convenience, define X := A. Now

J (logX)- dP = J logXdP
JE {1XS1} 

= J.X-• -X logXdQ (A2)

{X<l}

where So(t) := -tlogt for t > 0 and So(0) = 0. If Q{X < 1} = 0, Eq. (Al) follows immediately from Eq.
(A2), so assume that Q{X < 1} > 0. By differentiating twice, we see that Sp is concave on [0, oo), so by
Jensen's inequality,

J p(X)dQ < QJX < ljy)( XdQ)
{1X~i} Q{X 1< 1} J1Xsl} (A3)

=Q{X -< lbP (QX < 1})

which is clearly finite; returning to Eq. (A2), we see that Eq. (Al) is true when Q{X < 11 > 0.
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Appendix B

THE STRONG LAW OF LARGE NUMBERS

The proof of Eqs. (11) and (12) requires the following formulation of the Strong Law of Large Numbers.

Proposition. Let {XI} be a sequence of i.i.d. RVs defined on an underlying probability triple (QY, P).
Suppose that E[X1] is well defined and -oo < E[X1 ] < ox. Then

-E Xi P- E[X1 ]. (B1)

Proof. If E[X1 ] < oc, we may use Ref. 9, Theorem 2.3.1 to verify Eq. (BI); assume that E[Xf] = oo. Take
any positive constant B, and define

XnB := min{X,, B}. n = 1,2,... (B2)

Clearly the {XB}1 are i.i.d. and P-integrable, so Ref. 9, Theorem 2.3.1 again applies and we conclude that
P-a.s.

lim-Z Xi = E[XB]. (B3)

But P-a.s.
1 '2X1'2

lim inf-Z Xi > lim inf - X!B > E[X ]. (B4)
i=1 i=1

Since B was an arbitrary positive constant, we let B tend to infinity, and by the Monotone Convergence
Theorem, we then have from Eq. (B4) that P-a.s.

1 '2

lim inf- EXi = co, (B5)

which is the result we seek when E[X1 ] = oo. I
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